

State of the Smile: The Ever-Surprising Evolution of the Equity/Listed Options Market

QuantMinds, London, Nov. 15, 2023

Timothy Klassen, PhD CEO/Co-Founder, Vola Dynamics LLC

info@VolaDynamics.com or visit our booth!

Vol Skews: 2008 versus 2020

Parameter TS: 2008 versus 2020

Introduction

- The listed options market has grown dramatically over the last two decades.
- Prop shops and hedge funds are much more important players now.
- OTC flow and exotics markets can't ignore the listed (vanilla) market (but still try?)
- The events of the last 15 years have created or brought to the surface new facets of the market one has to consider.
- The two main threads of this talk are:
 - The listed options market has become very "sophisticated and opinionated".
 It contains a lot of useful information.
 - All the (modeling and algorithmic) details one has to get right to create and maintain a large-scale valuation infrastructure.

Listed (mostly Equity) Options Markets Overview

- In US alone: circa 1,600,000 options on 5,600 underliers (OPRA, Oct 2023)
 - SPX has about 20,000 options (calls and puts) and about 60 expiries these days!
- Vanilla valuation is complicated due to dividends, borrow costs, rate term-structure, events, settlement/calendar details, vol-time, and vol curves with lots of structure.
 - American "vanillas" are really exotics!
- OMM: All options can only be valued with real-time, robust implied borrow curves and well-designed & calibrated implied volatility surfaces.
 - Also required for real-time risk, PnL decomposition, margin, exotics, etc.
- All borrow and vol curve modeling and fitting analytics etc are proprietary.
- Low latency / HFT puts a lot of pressure on quant models and algos (esp. for OMMs)!

Implied Vols and Surfaces

- VOLA DYNAMICS
- Implied volatility surfaces (& borrow/forward curves) are the standard approach to summarizing the vanilla options market in an intuitive and compact manner.
- They provide the fundamental building block for the trading of vanillas (listed and OTC), as well as flow derivatives and exotics.
- There are many quant problems facing options and derivatives trading desks, and the problem of constructing sensible, arbitrage-free volatility surfaces from options market prices (bids and asks) is one of the hardest.
- This issue already exist for European-style options (SPX, SX5E, DAX, etc).

Implied Vols and Surfaces (cont'd)

- For European options (without divs) only integrated rates and variances matter.
 - Cash dividend modeling is relatively minor issue for Euro options (unless stochastic divs...).
- But American options are really path-dependent exotics and a lot of extra complications arise (esp. for ETFs, stocks, esp. with dividends):
 - Need to choose proper cash dividend and borrow cost modeling. Then:
 - Even in BS: Besides rate term-structure, proper choice of "vol time" (aka "business time"),
 including "event time" affects early exercise premia, and all details matter, incl. "settlement".
 - Beyond BS: Local vol? Stochastic LV? (Look at volga, vanna...)
 - Approxs/hacks to adjust ITM relative to OTM vol to still price call & put of same strike in BSM.
- There are subtleties in "De-Americanization" (see above and at the end...), but if in doubt think of "implied vol surfaces" as summarizing European options prices in a convenient and intuitive manner (whether they are listed/traded or not).

Vol Surface Parametrizations

- VOLA DYNAMICS
- There are of advantages to having a good vol curve parametrization per term:
 - Intuitive parameters, as independent as possible, stable from fit to fit.
 - Smooth^{*} (in strike) over regions that are strongly correlated (cross-hedging).
 - Comparable across terms, little term-structure if possible (except small T perhaps).
 - Makes it "easy" (easier...) to avoid arbitrage, e.g. Lee bounds can be built in.
 - Allows easy scenario generation, finding market opportunities, etc.
 - Easier to design an auditable and (human-)adjustable large-scale infrastructure.
 - Give fast and robust local vols, and help with other exotics model calibration issues.
- A parametrization of the term-structure is not as crucial (it's also very hard):
 - Good curves are easy to interp/extrapolate in T but tie together to avoid calendar arb!
 - Dupire formula is 1st order in T, 2nd order in strike...

Beyond S* curves: C* curves

- Liquid names can not be fit with simple public-domain curves like S3/SSVI, S5/SVI, SABR (**S* curves**), or parabolas, etc:
 - \circ S* curves have a unique, positive maximum in their curvature around ATF, **c2** > **0**.
 - Note e.g. that any kind of **event** (earnings, elections, Brexit, covid, etc) can lead to
 bi- or multi-modal distributions, which generally require **c2 < 0**.
 - This is true not just for equity, but **also for FX, IR**.
- Need curves that allow more general curvature structures, including c2 < 0, but can be made arbitrage-free and fitted robustly and fast.
- Vola Dynamics designed such curves: **C* curves**: C5, C6, C7,, C16
- Details later. First...

"SPIBOR" — Even the Fed cares now!

DYNAMICS

- What discount curve should you use for your options trading?
- Depends... but for implying borrows, vols, etc, use market consensus.
- Euro PCP for given term T: C P = DF F DF K
- For each disc factor **DF**(T) need a robust linear regression across many strikes K.
- For further robustness, can smooth rates via a term-structure fit.
- Why does the Fed care?
 - Treasuries, SOFR, etc are NOT risk-free rates!
 - They can be lower than risk-free ("convenience yield"), or higher ("default risk").
 - Usually lower, by 20 40 bps (almost flat).
 - SPX options MMs should be using close to risk-free rates ("box rates") due to margin requirements at exchange and OCC level.

Options-Implied Discount Rates 20220811-130000, chi2Red=0.170

What discount rates should I use?

SPIBOR Just one snapshot!

Nelson-Siegel TS fit

Options-Implied Discount Rates 20220110-150000, chi2Red=0.119

What discount rates should I use?

SPIBOR

Options-Implied Discount Rates 20191004, chi2Red=0.077

What discount rates should I use?

SPIBOR

Options-Implied Discount Rates 20181030, chi2Red=0.302

What discount rates should I use?

Maybe they are underlier/ sector dependent?

Options-Implied Discount Rates 20080111, chi2Red=0.140

What discount rates should I use in 2008 ??

SPIBOR

Vol Fitting Examples

- Given disc rate and divs, we first imply borrows or forwards (BS vs Black...)
- When implying vols we "de-Americanize" the options if needed...
- We then fit implied vols to suitable vol curves in each term, while transferring info across terms to avoid cal arb, etc.
- So we're purely concerned with the vol fitting problem here (not EEP).
- We will show in each plot:
 - **Curve type:** S* (S3/SSVI, S5/SVI), C* (C5, C6, C7,, C16) with #params.
 - **chi** aka chi2Reds: Standard relative (to "error bars") quality-of-fit metric (statistical).
 - **avE5** aka avgErrors5: Average of the absolute difference between fit and market implied vols for 5 strikes around ATM (in bps).

Can non-W shapes be fitted with simple curves? For large terms at least?

SPX 20191104

SSVI / S3 fit, i=34, T=0.95y

This is a lousy fit even over a medium range...

$$z := \mathrm{NS} := \frac{\ln(K/F)}{\sigma_0 \sqrt{T}}$$

VOLA DYNAMICS

Analytics for Options Trading

Can non-W shapes be fitted with simple curves? For large terms at least?

SPX 20191104

SSVI / S3 fit, i=34, T=0.95y

This is a lousy fit even over a small range...

... even though shape looks "simple" (c2>0) and this is a supposedly easier longer T.

SPX 20191104-153000 SABR3: T=0.9499, i=34, chi=121.976, avE5=16.3

SPX 20191104

SABR fit, i=34, T=0.95y

This is a lousy fit even over a medium range...

SPX 20191104

SABR fit, i=34, T=0.95y

This is a lousy fit even over a small range...

SPX 20191104

SVI / S5 fit, i=34, T = 0.95y

This is still a lousy fit even over a medium range...

Ditto for T = 2y

SPX 20191104

C15 fit, i=34, T = 0.95y

This is a great fit over a wide range, and can't be improved w/o over-fitting

chi2 is 1000 – 5000x smaller!

(Yes, curvature of vol^2 is > 0 ATM...)

AMZN 2018-04-26 earnings day

C8 Vol vs NS

Interesting Thursday: Earnings, new weekly listed, etc.

$$:= \text{NS} := \frac{\ln(K/F)}{\sigma_0 \sqrt{T}}$$

z

20

VOLA DYNAMICS

Analytics for Options Trading

AMZN 2018-04-26 earnings day

Vol fit for first term, i=0, K-space

Most negative c2 ever!

AMZN 2018-04-26 earnings day

Vol fit for first term, i=0, NS-space

Most negative c2 ever!

VOLA DYNAMICS

AMZN 2018-04-26 earnings day

Vol fit for 2nd term, i=1, K-space

AMZN 20180426-154500 C8: T=0.0604, i=3, chi=0.035, avE5=2.2

= 20180518

-

Nol

AMZN 2018-04-26 earnings day

Vol fit for 4th term, i=3, K-space

Still negative c2!

AMZN 20180426-154500 C8: T=0.1371, i=7, chi=0.032, avE5=3.2

AMZN 2018-04-26 earnings day

Vol fit for 8th term, i=7, K-space

Flat around ATM now, c2≈0.

Use C10 if you worry about far wings...

AMZN 2018-04-26 earnings day

C8 parameter term-structure First 3: vol0, s2, c2

Essentially flat shape params after 3m

params

Analytics for Options Trading

AMZN 2018-04-26 earnings day

C8 parameter term-structure

Essentially flat shape params after 3m

params

No.

31

TSLA 20200403-150000 C12m: T=0.0386, i=2, chi=0.096, avE5=3.2

TSLA 20200403

Do not trade off mids...

T = 20201106

<u>ام</u>

TSLA 20201021

Different day -- very different shapes and spreads...

TSLA 20201021

Is the market using the Merton model ?

TSLA 20201021-150000 C12w: T=1.9043, i=16, chi=0.018, avE5=37.2

T = 20220916

No

TSLA 20201021

Is the market using the Merton model ?

USO 20200327

Do not trade off mids...

5 strikes in a row at \$0.03 x 0.04

NOTE: Strike range is 25x

params

Getting close to March 2020...

VOLA

SPX 20200218 15:00

C15PM Param Term-Structure

First 3 params...

s2(T) a bit unusual...

params

Parameter TS SPX 20200218-150000 C15pm, chiAv=0.045, F0=3372.47

SPX 20200218 15:00

C15PM Param Term-Structure

First 5 params... meaning?

SPX 20200218 15:00

C15PM T = 1d

SPX 20200218-150000 C15pm: T=0.0076, i=2, chi=0.080, avE5=0.8

SPX 20200218 15:00

C15PM T = 3d

SPX 20200218-150000 C15pm: T=0.0842, i=14, chi=0.045, avE5=0.5

VOLA DYNAMICS

Analytics for Options Trading

Parameter TS SPX 20200313-150000 C15k, chiAv=0.037, F0=2565.03

ΙΑ

VO

SPX 20200313 15:00

C15K Param Term-Structure during the **covid crash**

First 5 params...

All **c2** < 0 !!

Super-steep near call wing: CW1

T = 20200320

Vol

SPX 20200313-150000 C15k: T=0.0186, i=3, chi=0.023, avE5=1.7

SPX 20200313 15:00

C15K T = 1w, in NS-space

Very compressed CW.

If fit followed PW more closely there would be fly arb...

SPX 20200313-150000 C15k: T=0.0186, i=3, chi=0.023, avE5=1.7

T = 20200320

SPX 20200313 15:00

C15K T = 1w, in K-space

Very compressed CW.

If fit followed PW more closely there would be fly arb...

(Pretty well-functioning market over nK=379 strikes here...)

SPX 20200313 15:00

C15K T = 6w, in NS-space

Very compressed CW, very sharp knee...

Vol T = 20200424

SPX 20200313 15:00

C15K T = 6w, in K-space

Very compressed CW, very sharp knee...

SPX 20220223 9:41:03

C16m T < 1d, in NS-space

Putin's put wing – shape never seen before! Pricing a bad & worse scenario?

C16m allows bias-free fits...

Inputs are MP1 here...

SPX 20220223 9:41:03

C16m T < 1d, in K-space

Putin's put wing – shape never seen before! Pricing a bad & worse scenario?

C16m allows bias-free fits...

Inputs are MP1 here...

T = 20220225

No

SPX 20220223 9:41:03

C16m T = 2d, in NS-space

What does it all mean?

VOLA DYNAMICS

- We will explain...
- To do so, let's take a step back and discuss in more detail:
 - Dividend modeling (briefly)
 - Vol curve/surface parametrizations
 - Arbitrage

Dividend Modeling

• Three types of dividends

- Yield/borrow
- Cash
- Discrete proportional
- Blending scheme to transition from cash to discrete proportional is standard.

• Two main classes of dividend models for cash component:

• Spot model

• **Hybrid models:** Observed stock = "Pure stock" + dividend floor

- Various flavors, specified by dividend floor details.
- Same, exact forward formula F = F(S,divs,r,q) for all hybrid models.
- "Pure stock" still follows GBM.
- Analytical pricing formulas in Euro case, numerical e.g. grid methods in American case.
- Allows a lot of easy extensions to handle credit, default, exotics, etc.
- For details see: *Pricing Vanillas Options with Cash Dividends* (SSRN).

Hybrid Models, Notation

 In a hybrid model the stock follows *shifted GBM*, and the prices of (un-discounted) European vanillas for the pure stock are:

$$\hat{C} = + F N(d_{+}) - K N(d_{-})$$
 (1)

$$\hat{P} = -FN(-d_+) + KN(-d_-)$$
 (2)

• Here N(x) is the normal cdf, log-moneyness $y := \log(K/F)$, and

$$d_{\pm} := rac{-y}{\hat{\sigma}} \pm rac{1}{2} \hat{\sigma} \quad , \qquad \hat{\sigma} := \sigma \sqrt{T}$$

• $\sigma = \sigma(T, K)$ is the implied volatility of the option.

- Normalized prices \hat{V}/F are function of two dim-less variables: y, $\hat{\sigma}$.
- Actual prices are obtained by shifting the forward F = F_T and strike K by the shift D_T, that depends on the hybrid model.
- For details: Pricing Vanilla Options with Cash Dividends (SSRN).

Our parametrization approach

- Work one term at a time, impose smoothness across terms.
- Factor out overall vol level (ATF) as: $\sigma_0 := \sigma(T, K = F)$.
- Define "shape" curve $f(z) = f(z|\mathbf{p})$ as function of normalized strike $(NS)^1$

$$z := \frac{y}{\hat{\sigma}_0} = \frac{\log(K/F)}{\sigma_0\sqrt{T}}$$

such that

$$\sigma(z)^2 = \sigma_0^2 f(z|\mathbf{p})$$

 There are no standard definitions – we define dimensionless "skew" and "smile/convexity" as slope and curvature of shape curve:

$$f(z) =: 1 + \frac{s_2}{2}z + \frac{1}{2}c_2z^2 + \dots$$

- s₂ and c₂ tend to have mild term-structure (except maybe as T → 0). They are even comparable across names. Have been range-bound for decades.
- Sometimes it is useful to work with s₁, c₁ defined via

$$\sigma(z) =: \sigma_0 (1 + s_1 z + \frac{1}{2}c_1 z^2 + \ldots)$$

• Trivially:
$$s_2 = 2s_1$$
, $c_2 = 2(c_1 + s_1^2)$.

Note that

$$\sigma(z) = \sigma_0 + \frac{s_1}{\sqrt{T}} \log(K/F) + \ldots,$$

so that an alternative definition of skew

$$\tilde{s}_1 := K \frac{\partial \sigma}{\partial K}|_{K=F} = \frac{s_1}{\sqrt{T}}$$

 No simple relationships between alternative definitions of curvature/convexity/smile.

• No butterfly arbitrage: Implied density ρ should be positive:

$$\hat{C}(T,K) = \int_0^\infty dS_T \ (S_T - K)_+ \ \rho_T(S_0 \to S_T)$$

$$\Rightarrow \quad \partial_{K}^{2} \hat{C}(T, K) = \rho_{T}(S_{0} \to S)|_{S=K}$$

- No calendar arbitrage: Total BS variance $w(y) := T\sigma(y)^2$ has to be increasing in T at any fixed y.
- Necessary (but generally not sufficient) constraint on the asymptotic wing behavior of implied vols (R. Lee, 2004):

$$w(y) \leq 2|y|$$
 as $|y| \to \infty$

- What are simplest possible implied vol curves? Need at least 3 parameters for ATF behavior.
- Vendors often use

$$\sigma(y)^n = \sigma_0^n \left(1 + s \ y + \frac{1}{2}c \ y^2\right) \quad \text{(or in terms of } z)$$

- Obviously has arbitrage in wings for n = 1, 2.
- Slight hope for n = 4, but would imply symmetric wings, which is intuitively and empirically wrong.
- Positivity has to be enforced too.
- Must do better...

Specific Curves: S3/SSVI

• Simplest sensible curve with 3 parameters $(c_2 \ge 0)$:

$$\sigma^{2}(z) = \sigma_{0}^{2} \left(\frac{1}{2}(1+s_{2}z) + \sqrt{\frac{1}{4}(1+s_{2}z)^{2} + \frac{1}{2}c_{2}z^{2}} \right)$$

- Was independently discovered by TRK (2003, "S3") and Gatheral/Jacquier (2013, "SSVI" = Simple SVI).
- Allows surprisingly varied skew shapes, including "takeover-for-cash" curves as c₂ → 0.
- Allows fitting of vast majority of US equity names.
- Very easy to avoid arbitrage (especially butterfly).
- In fact, in terms of the dimensionless variables $\hat{\sigma}_0, s_2, c_2$ can completely answer the butterfly-arbitrage question...

See our paper on SSRN for details about S3 curve, including simple necessary and sufficient no-butterfly arbitrage conditions in terms of parameters.

Provable facts about S3 no-fly-arbitrage

Theorem 1: When $c_2 = 0$, the SSVI/S3 curve has no butterfly arbitrage if and only if $|s_2| \le s_2^*(\hat{\sigma}_0)$, where

$$s_{2}^{\star}(\hat{\sigma}_{0})^{2} := \begin{cases} 4 - \hat{\sigma}_{0}^{2} & \text{for } \hat{\sigma}_{0}^{2} \leq 2 \\ 4/\hat{\sigma}_{0}^{2} & \text{for } \hat{\sigma}_{0}^{2} \geq 2 \end{cases}$$

Theorem 2: When $s_2 = 0$, the SSVI/S3 curve has no butterfly arbitrage if and only if $c_2 \leq c_2^{\star}(\hat{\sigma}_0)$, where

$$c_{2}^{\star}(\hat{\sigma}_{0}) := \begin{cases} \frac{5 - \frac{1}{8}\hat{\sigma}_{0}^{2}}{\left(1 - \frac{1}{8}\hat{\sigma}_{0}^{2}\right)^{2} + \hat{\sigma}_{0}^{2}} + \sqrt{\left(\frac{5 - \frac{1}{8}\hat{\sigma}_{0}^{2}}{\left(1 - \frac{1}{8}\hat{\sigma}_{0}^{2}\right)^{2} + \hat{\sigma}_{0}^{2}}\right)^{2}} - \frac{1}{\left(1 - \frac{1}{8}\hat{\sigma}_{0}^{2}\right)^{2} + \hat{\sigma}_{0}^{2}} & \text{for} \quad \hat{\sigma}_{0}^{2} \le 4 \end{cases}$$

$$\frac{8/\hat{\sigma}_{0}^{2}}{6} & \text{for} \quad \hat{\sigma}_{0}^{2} \ge 4 \end{cases}$$

More about no-arbitrage...

DYNAMICS Analytics for Options Trading

In terms European un-discounted call prices $\hat{C}(T,K)$ we are all familiar with:

Definition (No-Arbitrage): A call price surface, $\hat{C}(T, K)$, defined for all $T \ge 0, K \ge 0$ (or some subset thereof) is free of static arbitrage if:

- 1. $\hat{C}(T, K)$ is continuous and non-increasing in K.
- 2. $\hat{C}(T, K)$ is convex in K.
- 3. $\hat{C}(T, K \to \infty) = 0.$
- 4. In terms of a forward curve, $F_T > 0$: $(F_T K)_+ \leq \hat{C}(T, K) \leq F_T$, $\hat{C}(0, K) = (F_0 - K)_+$.
- 5. $\hat{C}(T, K)/F_T$ is non-decreasing in T at fixed K/F_T .

Remark 1: No differentiability in K required, it follows from convexity for all except a discrete set of K! Remark 2: Condition 4 holds automatically if prices are parametrized in terms of Black formula. PCP too.

No-Arbitrage in Vol Space:

Translating the price-space no-arbitrage conditions into vol-space, we get:

- **Definition (No-Arbitrage in Volatility Space):** A normalized implied volatility surface, $\hat{\sigma}(T, y)$, used to parametrize prices via the Black formula for calls and puts (hence PCP holds) is free of static arbitrage if:
 - 1. $\hat{\sigma}(T, y) > 0$ for all y (and T > 0) is continuous in y.
 - 2. $\hat{\sigma}(T, y)$ is twice differentiable in y, except perhaps for a discrete set of y.
 - 3. The density factor, g(y), is non-negative, $g(y) \ge 0$.
 - 4. $d_+ \to -\infty$ as $y \to +\infty$, for any T > 0.
 - 5. $\hat{\sigma}(T, y)$ is non-decreasing in T at fixed y.

The density factor

The implied density can be written as

$$\rho_y(y) = \frac{g(y)}{\hat{\sigma}(y)} n(d_-(y))$$

in terms of the density factor (aka "g-function") appearing in the no-butterfly-arb condition 3:

$$g(y) = \left(1 - \frac{y\partial_y w(y)}{2w(y)}\right)^2 - \frac{1}{4}\left(\frac{1}{w(y)} + \frac{1}{4}\right)\partial_y w(y)^2 + \frac{1}{2}\partial_y^2 w(y)$$

- In a Black-Scholes universe: g(y) = 1.
- Too much negative curvature (last term) can lead to g(y) < 0.
- There are different ways of writing g(y). Analyzing g(y) > 0 for some non-trivial curve parametrization always gets hard quickly! (S3 is by far the easiest, but not trivial...)

ATF No-Arbitrage Constraints

• If
$$w(z) = \hat{\sigma}_0^2 (1 + s_2 z + \frac{1}{2} c_2 z^2 + ...)$$
, then

$$g(z=0) = 1 + \frac{1}{2}c_2 - \frac{1}{4}s_2^2 (1 + \frac{1}{4}\sigma_0^2)$$

• $g(0) \ge 0$ implies upper bound on slope

$$s_2^2 \leq rac{4+2c_2}{1+rac{1}{4}\hat{\sigma}_0^2}$$

or lower bound on curvature $(c_1 = \frac{1}{2}c_2 - \frac{1}{4}s_2^2)$

Similarly, with a slightly larger correction term:

 $C_2 \gtrsim -2$

• Very relevant around FOMC and earnings where not just $c_1 < 0$ but even $c_2 < 0$ can happen!

 $c_1 \geq -1 + \frac{1}{16} s_2^2 \hat{\sigma}_0^2 \approx -1$

More fun with arbitrage

• We all know the "**global**" no-strike-arbitrage condition:

 $\circ \rho(y) \ge 0$ for all y \Leftrightarrow No strike arbitrage for any y in this term.

- In words: No butterfly arbitrage \Leftrightarrow No strike arbitrage of any sort.
- What is the "local" no arb condition, for a given y?
 - $\rho(y) \ge 0$ excludes butterfly-arbitrage in y.
 - But there can still be (strike-)spread arbitrage in y!

• Win a Vola hoodie if you can name the necessary and sufficient local condition in the nicest possible manner!

More fun with arbitrage...

- The necessary and sufficient local no-strike-arbitrage condition in y is:
 - pdf(y) ≥ 0 and 0 ≤ cdf(y) ≤ 1
- Proof: The cdf is by definition

$$c(y) := \int_{-\infty}^{y} dy' \,\rho_y(y') = \int_{0}^{K(y)} dS_T \,\rho_K(S_T)$$

But this is also
$$\partial_K \hat{P}$$
 and $\partial_K \hat{C}$ – 1. So:

- Put spread arbitrage, $\partial_K \hat{P} < 0 \iff c(y) < 0$.
- Call spread arbitrage, $\partial_K \hat{C} > 0 \iff c(y) > 1$.
- The cdf c(y) always goes to 1 at large y, even when call prices do not go to 0!
- Spread arb implies fly arb, but not vice versa (Proof: obvious). In fact:
 - Max spread arb ≤ max fly arb !

The Lee bounds are **not** violated:

dw/dy=0.79 in p2 far CW

Asymptotically there is no arb...

S5 = SVI

Now we know what the dotted lines mean...

Note: The convexity relevant for fly-arb is for C(K) not C(NS), but...

69

Spread and fly arb come in overlapping regions (if there is spread arb).

DYNAMICS

VOLA

Two **"C5**" curves with perfect mirror symmetry in NS (or y)

Win a Vola T-shirt:

What if any other plot(s) will show a perfect symmetry of some kind?

VOLA

DYNAMICS

p1 has call spread arb.

VOLA

DYNAMICS

74

Indeed, only p1 has (call) spread arbitrage!

C5 pdf

Both have fly arbitrage, but not symmetrically.

Why not symmetric ??

C5 pdf-factor

The pdfs are not, because of ... ?

(pdfs have same fly arb **regions**, but not fly arb **amounts**...)

VOLA

DYNAMICS

Does the density have to be continuous?

Recall: $\hat{\sigma}(y)$ is twice differentiable **except for discrete points**, in general.

Correspond to delta- functions in the density, hence vol slope discontinuities! (Must be positive mass...)

Financially relevant, eg:

- Take-over for cash
- Currency pegs

The slope discontinuity is proportional to the probability of the cash take-over happening at the take-over price!

$$c(y) = N(-d_{-}) + n(d_{-})\partial_y \hat{\sigma}(y)$$

Vol Curves, PDFs, CDFs, Local Vols:

- Good vol curves are a "neat" way to think about (strike)-arbitrage, implied and cum densities, etc.
 - And useful even if there is arbitrage, e.g. the cdf always goes to 1 for large strikes even if there is (massive) arbitrage...
- But there is more... extending the good curves to a good surface, we have eg:
 - LocalVar(T,y) = $\partial_{T} w(T,y) / g(T,y)$
 - Since Dupire involves only first order T-derivs, T-dependence is less worrisome...
- Working in vol-space with good vol curves provides the fastest and most numerically stable approach to calculating important quantities we care about.

Normalized Arbitrage Metrics 1

- We would like to have dimensionless, normalized arbitrage metrics for butterfly a_{κ} and calendar arb a_{τ} :
 - If they are 0 \Rightarrow no arb. If \ll 1, there is very little and hence probably harmless arb.
 - Comparable across terms, underliers, spot-regimes, etc.
 - Ideally can be calculated purely off vol surface, without knowledge of traded T, K, and have well-defined "continuum limit".
- Why do we care?
 - Is intuitive: any trader, quant, or dev can get used to it.
 - Makes quality control of large-scale vol surface fitting infrastructure much easier.
 - Can be used as part of automated vol curve type selection process.

Normalized Arbitrage Metrics 2

- **Butterfly arb**: Obvious use integral over negative part of density!
 - Average (or max, etc) over terms. Has continuum limit in T-space.
- **Calendar arb**: Look at "rays" $T \rightarrow w(T,y)$ for given log-strike y.
 - Want to take ratio of negative over positive forward variances.
 - De-weight each T, y term as y goes OTM (e.g. vega-weighted).
 - Has continuum limit as more and more T, y are considered.
- Example: Use statistical quality-of-fit criteria plus "penalty factors" based on normalized arbitrage metrics to find best vol curve type for any underlier.
- For details on the metrics, look out for the paper! For now...

Curve Statistics for the Options Universe in 2023

- There are ~5630 names in OPRA (Oct 2023). We find, roughly, for bias-free fits:
 - 4100 (73%) can be fit with <mark>S3</mark>/SSVI. (S5/SVI: 70 or 1.2%)
 - 650 (11.5%) can be fit with C5.
 - 700 (12.4%) can be fit with C6, C7*, C8* C9*.
 - There are a 70 inverse curves (C6C+) for VIX, VXX, (inverse) leveraged ETFs, low-priced stocks.
 - The remaining 50 (0.9%) names require higher C10 C16 curves the most liquid names!
- SPX/SPY/ES require ~16-18 parameters (for some terms) to get bias-free fits of all options down to zero-bids. Some OMMs use 25(+?) params for SPX.
- Big tech names and (other) global indices require 9 –15 params per term.
- There has been a relentless drive towards higher curves, to fit tighter spreads and wider (normalized) strikes ranges.
 - Empirically, roughly (for OPRA universe):

nParams \approx (nOptions / 5)^{1/3}

Some final examples of living dangerously...

- Namely, examples of surfaces close to arbitrage, either calendar or fly.
- In particular, what do the funky vol shapes mean, in terms of the markets expectation about the future?
- These expectations are a lot more specific and sophisticated nowadays than e.g. during the GFC in 2008.

AMZN 2018-04-26 earnings day

C8 total variance plot

First 10 terms

No calendar arbitrage! (Or butterfly...)

Interesting Thursday: Earnings, new weekly listed (**i=6**), etc.

Total Vars AMZN 20180426-154500 C8, chiAv=0.028, e5Av=6.7

≥

AMZN 2018-04-26 earnings day

C8 total variance plot

First 10 terms, with errors bars

Interesting Thursday: Earnings, new weekly listed (i=6), etc.

85

Fitting **AEX** on day before Brexit

Total Var plot with error bars

SPX 2022-02-23

Day before Ukraine invasion

C16m total variance plot

No crossings! No calendar arb!

(even i=14,15)

Just SPXW for clarity (and harder...)

AEX on day before Brexit vote: T=2d, vols and implied density

AMZN 2018-04-26 earnings day:

T=1d, vols and implied density

SPX 2020-03-13: During covid crash T=1w, vols and implied density

SPX 2020-03-13: During covid crash **T=6w**, vols and implied density

Parameter TS: 2008 versus 2020

Vol Skews: 2008 versus 2020

SPX Spot-Vol Dynamics: Basics

- Shape (by NS or Δ) is much more stable than overall vol level (vol0 aka ATF vol).
 - Sticky-strike or sticky-delta vol dynamics does not hold at all (for equities for 15y+).
- ATF vol dynamics is very well described by one dimensionless number, SSR aka vol sensitivity aka super-skew, which is the ratio of vol0-path & skew slopes.
 - Even when SSR = 1, i.e. sticky-strike around ATF, is the behavior in the wings usually much better described by fixed NS-shape than by sticky-strike.
- Very simple dynamics in terms of NS vol parameters (e.g. just ATF vol), gives complicated vol-by-strike dynamics, that actually describes market moves.
 - It also gives the correct adjusted (aka smart aka skew) deltas and gammas (see LinkedIn article).

SPX Spot-Vol Dynamics: Then and Now

DYNAMICS

- In the olden days:
 - Virtually no shape dynamics.
 - Overall vol level dynamics described very well by one SSR with little term-structure (TS).
 - 1 < SSR < 2, with 2 reached only on big down days. Typical value SSR=1.3.
- Nowadays:
 - There is often term-structure in SSR, with SSR(T>1y) closer to typical values.
 - There is occasionally, e.g. on some big down days, shape dynamics, eg in c2.
 - SSR > 2 and SSR < 1 can happen, on short end.
 - Some horizon dependence (1min, 5min, etc), including intraday vs overnight differences.
 - More "fluctuations", in path-dependent manner (cf. Guyon), around typical values.
 - Open Q: How strong is path-dependency effect relative to levels set by "SSR regime"?

Stability of NS Shape SPX 20190410 T = 9m

Shape stable over many days, while underlier moves around.

Also, no floppy wings!

Stability of NS Shape SPX 20190410 T = 1d

Shape stable even on last day

Also, no floppy wings!

ATF Vol path (C8, volSensi = 1.5, clampFac = 0.2)

No

K, S

Vol sensi term-structure: SPX 20190805 1-min C12m chiTS(Pow)=0.183

pVol0

SPX 20190805

Vol sensitivity (SSR) term-structure

Parametric fit for robustness on small data sets (can be done intra-day)

Vol sensi term-structure: SPX 20200224 1-min C12m chiTS(Pow)=0.321

SPX 20200224

Vol sensitivity (SSR) term-structure

Parametric fit for robustness on small data sets

SPX 20200429

Vol sensitivity (SSR) term-structure

On up-days can be upward-sloping, and SSR < 1 at least for some terms

SPX SSR Time-Series 2012 – 2023

Expiries: 30, 90, 365 days

60d trailing window average of close-to-close SSR

Notice low SSR in 2022

SPX 20200226 to 20200227, return = -4.2%, T = 20200320

Close-to-close spot vol dynamics

SPX 2020-02-26 to 2020-02-27

T = 3w, SSR = 2.5

Evidence for c2-spot-sensitivity > 0

Close-to-close spot vol dynamics

SPX 2020-02-26 to 2020-02-27

T = 2.5m, SSR = 2.0

Evidence for c2-spot-sensitivity > 0

Close-to-close spot vol dynamics

SPX 2020-02-26 to 2020-02-27

T = 1y, SSR = 1.5

Evidence for c2-spot-sensitivity > 0

Close-to-close spot vol dynamics

SPX 2020-09-22 to 2020-09-23

Even when SSR = 1: no sticky strike in the wing(s):

Instead: Shapes are sticky-by-NS!

This down-day comes after a sequence of (minor) down days, and SSR has mean-reverted/reversed to 1...

Spot-Vol Dynamics, Vol Shapes and Delta

- What is the **correct delta of a vanilla option**?
 - Delta = DeltaBS + vega * dVol/dF * dF/dS
- dVdF (:= dVol/dF) and the delta adjustment are very large these days!
- dVdF can be calculated from the spot-vol dynamics.
 - Spot-Vol Dynamics is equivalent to knowing the optimal delta (hedges spot-correlated vol move).
- If shapes are stable just one dimensionless number (SSR) is needed.
- Fixed-strike dynamics, i.e. dVdF, and vol parameter dynamics (aka "vol path" for first parameter) behave qualitatively very differently (as we saw already)!
 - Only simple (robust) linear regressions are needed for parameter dynamics.
- For details, see our <u>LinkedIn post</u>.... Or briefly below...

F dVol/dF sqrt(T)

SPX 20190805 T=0.13y M2

Empirical dVdF:

Regression of dvol vs dF for each strike, using 1-min data from 10:00 - 16:00

Note: Fixed strike normalized dVdF is plotted as a function of NS (using average F, T, vol0 over day).

SPX 20190805 T=0.13y M2

- Normalized dVol/dF
- Delta adjustments
- Final deltas

"Theoretical" dVdF agrees extremely well with empirical dVdF !

These dVdF (etc) curves are extremely stable across time, curve-type, algo details, etc.

Only input: vol fit & SSR (aka pVol) per term.

Some firms use constant or linear approx for dVdF(K): Linear approx is fine in put wing, bad in call wing

T = 20190920

Vol

SPX 20190805 T=0.13y M2

Super stable fit....

With steep "knee" at NS = +1.0

ATM parabola does not describe knee at all -- ATM curvature is negative!!

Explains break-down of linear approximation

Questions arising for a bank desk using sub-par curves

- Model Control/IPV & Regulators would like the same surface/theos to be used across Flow, Exotics and OMM desks for a given name (one would hope...)
- How much time is spent massaging curves/surfaces?
 - A lot, it seems. Even then: A top tier bank had no SPX vol surface for 2 days in March 2020...
 - Often not even to match the market (impossible...), but to dampen risk swings...
- If the curves/surfaces are not flexible enough to match the market:
 - Actual "best" fit depends on weights put on different strike ranges. Not stable, will sometimes jump.
 - How to (bias-) correct? Different recipes for each product...
 - Even for var swaps: Is infinite-strip fair vol accurate? No. Is basis stable? Unlikely...
- Structured Products: Simple curves do not even match longer term market...
 - How to hedge with vanillas? How to test that using simple curves for longer-dated SP does not lead to significant model error in valuation and risk? What happens once products are close to expiry?
- How important is proper spot-vol dynamics for exotics/SP deltas, vegas, etc?
- Can one trust a consensus pricing service for options valuation?

Consensus Pricing Service versus the listed AMZN market AMZN 2020-09-17, T = 1w

113

Consensus Pricing Service versus the listed AMZN market AMZN 2020-09-17, T = 3m

114

Subtleties of Pricing American "vanillas"

VOLA DYNAMICS

- In the olden days:
 - Could price every vanilla, European of American, with one flat r, q, and vol.
 - The same vol would work (well enough...) for call and put at same T,K.
- Already pretty hard, especially in real time. One needs:
 - A proper cash dividend model (no consensus even for vanilla...).
 - Handle settlement effects (incl. exchange and bank holidays).
 - A good choice of "vol time" (aka "business time"), including "events".
 - NOTE: Pricing with vol time is equivalent to pricing with a (particular) vol term-structure.
 - Then: imply "SPIBOR" (~daily), borrows (real time), and vol surfaces (real time).
 - "American PCP" condition to imply borrow: Demand volP(K) = volC(K) around ATM

Subtleties of Pricing American "vanillas" 2

- Now: How fancy does the modeling have to be? ("De-Americanization")
 - BS: (1) Flat r,q, vol (2) r(t), q(t), vol (3) r(t), q(t), vol(t) for each K(?)
 Beyond-BS: (4) r(t), q(t), LV, (5) r(t), q(t), SLV, (6) Other (approx/hacks...)
- Empirically in US: One definitely needs rate TS, vol-time including events, settlement, proper dividend modeling.
- In Europe: Evidence that local vols (or roughly equiv approx's) are being used.
- Let's look at some examples:
 - Rate TS and event effects: MSFT, TSLA, TGT
 - Settlement effects (+more): SPX

Event Time Effect on Pricing American Vanillas

TGT 2023-11-08

Target has a dividend and earnings call just before expiry T=2023-11-17 (i=1).

<u>Top row</u>: Without an "event time" an implied borrow allows (OTM and ITM) market prices to be matched at a few strikes, but not all.

<u>Bottom row</u>: With an event time of 0.09y all prices can be matched, in all expiries!

Rate TS and Event Time for American Vanillas

MSFT 2023-07-07

The ultimate test of a valuation approach is always the price-difference plot: Mkt - Theo

Flat term rates r(T), q(T)

Local r(t),q(t) and $\Delta T_E = 0.04y$

Rate TS and Event Time for American Vanillas

MSFT 2023-07-07

"Clean" ATF vols, $\Delta T_{E} = 0.04y$

"Dirty" ATF vols

119

Rate Term-Structure Effect on Pricing American Vanillas TSLA 2023-08-31

Price-Difference plot: Mkt - Theo

← Pricing with flat term r,q

T = 2.4y

 \leftarrow Pricing with local r(t),q(t)

Settlement Effects for SPX options

Let's treat SPX like an equity with a "spot", borrow cost, and (perhaps) cash dividends.

Implied borrow cost term structure

← Ignoring settlement, wrong spot

Wrong spot shows up as 1/T term in the borrow TS (made up wrong spot for illustration here...).

← With settlement, wrong spot

Now short-term borrow TS is smooth.

Settlement Effects for SPX options

Let's treat SPX like an equity with a "spot", borrow cost, and (perhaps) cash dividends.

Implied borrow cost term structure

← With settlement, implied spot

No divs, so borrow includes div yield

 \leftarrow With settlement, implied spot

With divs, so borrow is "pure" and very flat close to 0

What we didn't talk about!

- Details of implied borrows, forwards.
- Fine control of fits, e.g. temporal filtering, priors.
- Easy, realistic scenarios.
- PnL explain in terms of greek or factors (spot, vol, skew,...)
- Vol derivatives pricing, consistent greeks with vanillas.
- VIX futures relationship to SPX and VIX vol surfaces.
- Non-Equity underliers.

Questions?

Stop by the Vola Dynamics booth for more fun!

- Sophisticated banks, hedge funds and prop shops rely on the Vola Dynamics quant library.
- See VolaDynamics.com, email info@VolaDynamics.com