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Mysteries of the (Listed) Equity Options World

Why do data vendors have different vols for calls and puts, no
greeks for many options (ITM, some OTM), and bad implied
dividends?

Why do CNBC, Bloomberg, et al never show sexy vol curves?

Why does every half-way serious options trading team write their
own valuation (pricer, fitter for borrows and vols) and trade analysis
infrastructure (mark-ups, PnL decomposition, TCA, etc)?

Lead-lag relationships in vol space are orders of magnitude slower
than in the equity domain.

Some leading options market makers (OMMs) use hand-calibrated
(not auto-fitted) vol surfaces.
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Equity Options Market Overview

In US alone there are 500,000+ options on 4,000+ underliers.

Most do not trade on any given day. Most have very wide
bid-ask spreads at any given time, especially ITM and very
OTM options.
Even liquid underliers can have such options.
OTOH: Some options have super-tight spreads that are hard
to fit with “reasonable” vol skew curves.

All options can only be valued with real-time, robust implied borrow
and sophisticated volatility curves.

Also required for real-time risk and PnL decomposition.

Well-designed parametric curves are needed for sensible book-level
sensitivities (vanillas + exotics): normalized vega, skew vega, etc

All borrow and vol curves are proprietary. Despite big efforts, no
data/analytics vendor has them (even EOD historical).
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Mysteries.... in more detail

The equity options market is complicated due to dividends, borrow
costs, events, and vol curves with lots of structure – but spreads can
be very tight. Nowadays most liquid options (SPY, QQQ, AAPL,
VXX) are American-style (much harder than future/index options)

To value all vanilla options on an equity underlier one needs:
Interest rates – freely available (but which one?)
Dividend projections – can be bought (but pretty expensive)
Borrow curve – not available for purchase at any price
Volatility surface, volatility TTX – not available at any price

To value exotics, one needs an arbitrage-free volatility surface also
in the far wings, as input to SLVJ calibrators (not available).

A dirty secret of the options industry is: Only a handful out of

hundreds of players know (sort of):
How to properly price with cash dividends (model & algo issue)
How to imply stable borrow cost curves
How to design, and robustly calibrate tradable vol curves in real-time
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What do Vanilla Options Market Makers do?

Use “hacked” Black-Scholes framework for valuation & risk mngt:

Pick dividend model, as well as dividend amount, dates.
Figure out borrow cost term-structure.
Use a volatility TTX (affects relative early-exercise premia).
Decide on event weights (underlier specific: FOMC, earnings).
Manage or fit implied volatility curves/surface.
For greeks use implied vol σ = σ(T ,K ) in Black-Scholes
model, but correct for spot-vol dynamics (smart delta).
Have good and fast underlier valuation.
Need fast & robust American pricer (with proper div model).

Why Black-Scholes?

Should there be one borrow cost per term?

Should same implied vol be used for call and put at a given
maturity and strike T ,K?
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Dividend Modeling

Forty years after Black-Scholes there is no consensus on how to
model cash dividends!

Cash dividends mean that the observed stock price can not follow
geometric Brownian motion (GBM).

In a vanilla context the question is how to combine the stochastic
part of underlier evolution (e.g. who follows GBM?) with...

Three types of dividends:

A dividend yield – used to model borrow cost
Cash dividends – how most dividends are actually paid
Discrete proportional dividends

Most firms use blending scheme to transition from cash dividends
on short end to proportional dividends in long term.

Proportional divs are also useful in times of extreme uncertainty
(market-wise or name-specific). E.g. during 2008 crisis.
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Dividend Models

Main two classes of dividend models are:

Spot model: The dividends come out of the observed stock
price. (Need to modify cash dividends at low stock price.)
Hybrid models: The dividends come out of a “cash buffer”,
related to the PV of future dividends: St = S̃t + Dt

Spot model might seem naively more reasonable, but in practice
leads to a lot of complications and hacks, since not GBM.

Hybrid models are much simpler to handle for both vanillas and
exotics, since pure stock S̃t still follows GBM. Can also easily
handle credit risk, extension to (light) exotics, local vols, etc.

We will assume a hybrid model from now on.

NOTE: Even if you care only about European options, dividend
modeling matters – how e.g. are SPX and SPY vols related?
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Hybrid Models, Notation

In a hybrid model the stock follows shifted GBM, and the prices of
(un-discounted) European vanillas for the pure stock are:

Ĉ = + F N(d+) − K N(d−) (1)

P̂ = − F N(−d+) + K N(−d−) (2)

Here N(x) is the normal cdf, log-moneyness y := log(K/F ), and

d± :=
−y

σ̂
± 1

2 σ̂ , σ̂ := σ
√

T

σ = σ(T ,K ) is the implied volatility of the option.

Normalized prices V̂ /F are function of two dim-less variables: y , σ̂.

Actual prices are obtained by shifting the forward F = FT and
strike K by the shift DT , that depends on the hybrid model.

For details: Pricing Vanilla Options with Cash Dividends (SSRN).
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Hybrid Model Shifts

The shifts Dt for various hybrid models with r =3%, q =1%, and a quarterly cash
dividend of 0.5 first paid at t1 =0.085, using blending scheme (2, 4).

For PHM, SKA: using T =1.01. FHM = HM2, PHM = HM1, SKA = HM3
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Calibrated Borrow Rate Term Structure

Implied ATF borrow rate term-structure of various models calibrated to reference

market HM2 with r =3%, q =1%, σ=30%, and a quarterly cash dividend of 2 first

paid at t1 =0.085. Exercise-style is American and N =65.
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Implied ATF volatility term-structure of various models calibrated to reference market

HM2 with r =3%, q =1%, σ=30%, and a quarterly cash dividend of 2 first paid at

t1 =0.085. Exercise-style is American and N =65.
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Implied borrow skew of various models calibrated to reference market HM2 with

r =3%, q =1%, σ=30%, and a quarterly cash dividend of 2 first paid at t1 =0.085.

We show the skew just before, T =0.33 (solid), and after, T =0.34 (dashed), the

second dividend. Exercise-style is American and N =65.
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Volatility Curve Parametrization Wish List

Parameters should have simple, intuitive meaning, esp. first three.

Parameters should be “independent”, stable from day to day
(parsimonious).

Little term-structure, if possible.

No-arbitrage constraints should be “easy” to incorporate.

Parametric vols should be easy/fast to compute.

No hacks! (in wings, etc)

Vol curves arising from standard “SLVJ”-type model should be
fittable within a few bps (at worst).
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Benefits of good volatility curve/surface parametrization

Can (pretty) easily be set/checked by humans if necessary/desired.

With suitable fitting framework, have hope of producing fast and
robust implied vol curves/surfaces.

Portfolio level greeks via parameter bumps make sense for vanillas
and exotics, and are east and fast to calculate.

Local vols can be produced fast & robustly via Dupire formula.

If we can fit all SLVJ models, can fit all real-world surfaces(?).
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Our parametrization approach

Work one term at a time, impose smoothness across terms.

Factor out overall vol level (ATF) as: σ0 := σ(T ,K =F ).

Define “shape” curve f (z) = f (z |p) as function of normalized strike
(NS)1

z :=
y

σ̂0
=

log(K/F )

σ0

√
T

such that
σ(z)2 = σ2

0 f (z |p)

There are no standard definitions – we define dimensionless “skew”
and “smile/convexity” as slope and curvature of shape curve:

f (z) =: 1 + s2 z + 1
2c2 z2 + . . .

1For hybrid models with D 6= 0, use: K/F → (K − D)/(F − D).
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Our parametrization approach (cont’d)

s2 and c2 tend to have mild term-structure; they are even
comparable across names. Have been range-bound for decades.

Sometimes it is useful to work with s1, c1 defined via

σ(z) =: σ0 (1 + s1 z + 1
2c1 z2 + . . .)

Trivially: s2 = 2s1, c2 = 2(c1 + s2
1 ).

Note that
σ(z) = σ0 +

s1√
T

log(K/F ) + . . . ,

so that an alternative definition of skew

s̃1 := K
∂σ

∂K
|K=F =

s1√
T

No simple relationships between alternative definitions of
curvature/convexity/smile.
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No-Arbitrage Constraints in Vol-Space

No butterfly arbitrage: Implied density ρ should be positive

Ĉ (T ,K ) =

∫ ∞
0

dST (ST − K )+ ρT (S0 → ST )

⇒ ∂2
K Ĉ (T ,K ) = ρT (S0 → S)|S=K

No calendar arbitrage: Total BS variance w(y) := Tσ(y)2

has to be increasing in T at any fixed y .

Necessary (but generally not sufficient) constraint on the
asymptotic wing behavior of implied vols (R. Lee, 2004):

w(y) ≤ 2|y | as |y | → ∞
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Simple consequences: Implied density 1

Local vols and implied densities can be calculated most neatly in
terms of the total variance w(y) = Tσ(z)2. Eg the implied density:

ρ(y) =
g(y)

σ̂(y)
n(d−(y)) ,

where n(x) = N ′(x) is the normal density, and

g(y) =

(
1− y w ′(y)

2w(y)

)2

− 1

4

(
1

w(y)
+

1

4

)
w ′(y)2 +

1

2
w ′′(y)

Absence of butterfly arbitrage: g(y) ≥ 0 for all y .

In Black-Scholes case: g(y) = 1 for all y .

NOTE: Will use same symbol whether we consider a quantity a
function of z or y .
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Simple consequences: Implied density 2

For our vol curve parametrizations w(y) = σ̂2
0 f (z).

Then w ′(y) = σ̂0f
′(z) and w ′′(y) = f ′′(z), so that

g(y) =

(
1− z f ′(z)

2f (z)

)2

− 1

4

f ′(z)2

f (z)
− σ̂2

0

16
f ′(z)2 +

1

2
f ′′(z) =: g(z) .

The vol level appears in only one place! All else only depends on
shape parameters.

Makes the analysis of butterfly arbitrage significantly simpler (but is
still very hard in general).

Will see example later for S3/SSVI curve.
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ATF No-Arbitrage Constraints

If w(z) = σ̂2
0 (1 + s2z + 1

2
c2z

2 + . . .), then

g(z =0) = 1 + 1
2
c2 − 1

4
s2

2 (1 + 1
4
σ̂2

0)

g(0) ≥ 0 implies upper bound on slope

s2
2 ≤

4 + 2c2

1 + 1
4
σ̂2

0

or lower bound on curvature (c1 = 1
2
c2 − 1

4
s2

2 )

c1 ≥ − 1 + 1
16

s2
2 σ̂

2
0 ≈ − 1

Very relevant around FOMC and earnings where not just
c1 < 0 but even c2 < 0 can happen!
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Specific Curves: Parabolas

What are simplest possible curves? Need at least 3
parameters for ATF behavior.

Vendors often use

σ(y)n = σ2
0 + s y + 1

2
c y 2 (or in terms of z)

Obviously has arbitrage in wings for n = 1, 2.

Slight hope for n = 4, but would imply symmetric wings,
which is intuitively and empirically wrong.

Positivity has to be enforced too.

Must do better...
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Specific Curves: S3/SSVI

Simplest sensible curve with 3 parameters (c2 ≥ 0):

σ2(z) = σ2
0

(
1
2
(1 + s2z) +

√
1
4
(1 + s2z)2 + 1

2
c2z2

)
Was independently discovered by TRK (2003, “S3”) and
Gatheral/Jacquier (2013, “SSVI” = Simple SVI).

Allows surprisingly varied skew shapes, including
“takeover-for-cash” curves as c2 → 0. See plots.

Allows fitting of vast majority of US equity names.

Relatively easy to avoid (butterfly) arbitrage.

In fact, in terms of the dimensionless variables σ̂0, s2, c2

can completely answer the butterfly-arbitrage question...
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S3 shapes: different terms

Vol vs K/F:  vol0 = 0.2, s1 = -0.2, c1 = 0
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S3 shapes: different curvatures

Vol vs K/F,  T=1m

0%

10%

20%

30%

40%

50%

60%

0.2 0.4 0.6 0.8 1.0 1.2 1.4

c1=-0.03

c1= 0.0

c1= 0.06

25/59



Introduction Dividend Modeling Volatility Curve Fitting Examples Conclusion

S3 shapes: looked at the right way: σ2 versus z

Vol^2 vs NS
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Necessary and Sufficient No-Arb Conditions for S3/SSVI
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Necessary and Sufficient No-Arb Conditions for S3/SSVI
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Exact and previous bounds on c2 for s2=0
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Specific Curves: 5 Parameters (SVI, etc)

Besides 3 parameters for ATF would be nice to have independent
parameters C± for wings:

σ(z)2 → σ2
0 C± |z | as z → ±∞ (σ̂0C± ≤ 2)

For S3/SSVI: C± =
√

1
4 s2

2 + 1
2c2 ± 1

2 s2

For Jim Gatheral’s SVI and others (JW/L5, TRK) the C± are
independent parameters (constrained by −C− ≤ s2 ≤ C+).

Just some algebra to re-express their “raw” parametrization in
terms of natural parameters σ0, s2, c2,C−,C+. (Or minimum
variance ratio instead of c2.)

Can fit some names better than with S3/SSVI.... but surprisingly
not much better in many cases!?

Certainly can not fit W-shaped curves around events (still c2 ≥ 0).
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Specific Curves: What to do for most liquid names?

For very liquid names (SPY, other ETFs, AAPL etc,
KOSPI) none of the analytic curves (SVI, L5 or
amendments) work well, even in the absence of events.

There is a fundamental problem with the shapes allowed
by these curves: Curvature has unique maximum around
ATF, but that’s not what the market wants! (Why?)

Need more flexible shapes that can handle more generic
curvature structures, incl. negative curvature around ATF:
C5, C6, C7, C8.

30/59



Introduction Dividend Modeling Volatility Curve Fitting Examples Conclusion

Volatility fitting framework

Input to fitter are implied vols with error bars (after proper div
modeling, borrow implication, etc).

All our vol curves have sensible dimensionless parameters (first
three are universal), which allows the use of curve-independent
heuristics from 16 years of vol fitting experience across many
names, geographies and asset classes.

Fit one term at a time, transfer information between terms, for
smoothness and stability.

Minimize chi-square + soft penalties, for robustness and to allow
the fitting of terms with less (effective) data than parameters.

Good microprices help, but even then various heuristics are needed
to deal with data issues in real-time.

Keeping track of quality-of-fit metrics and error bars for final
outputs is crucial for real-time trading applications.
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Volatility fitting examples

Examples are fits of American-style options on liquid US ETFs or
stocks (plus E-mini futures options).

Starting with options and underlier prices, we need to:

pick interest rate
pick cash divs (if appropriate)
imply borrow cost for each term to get “American PCP”
imply vol-by-strike
fit all terms to various vol curves

Are using simple mid for prices; vol error bars come from bid-ask
spread in price space.

Equity option price data were provided by MayStreet LLC.
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Summary and Conclusion

There is no standardization in the equity options markets around
dividend modeling, borrow costs, or vol curves and their calibration.

No borrow or vol curves are publicly available, historical or live, free
or for purchase!

No vol curves in the public domain can fit liquid names like SPY
and AAPL. (Some believe they can only be fit non-parametrically...)

Superior modeling and numerical expertise are still crucial for fast
and robust real-time options valuation.

Lack of transparency hinders the wider use of options and the
efficient transfer of vol information across related products.

Equity options are due for some major “RND”:
Rationalization, Normalization and Democratization!

Hopefully can achieve same as in transition from old to new VIX:
A healthier market, larger volumes, esp. from smaller players.

Want to help? Stay tuned!

58/59



Introduction Dividend Modeling Volatility Curve Fitting Examples Conclusion

VOLAR – What we do

Super-fast, robust, and sensible pricing, fitting, and
volatility curve analytics. To start:

Drop-in replacements for pain points in most firms’ infrastructure:
pricer and fitter (simple API, hard analytics underneath)

Provide, in real-time and historical, all valuation, risk,
and trade analysis data and services relevant for options
trading firms.

Consulting, custom design and development

For more information: info@volar.io

59/59


	Introduction
	Dividend Modeling
	Volatility Curve Fitting  
	Examples       
	Conclusion

